
Received: 21 August 2017 | Accepted: 26 January 2018

DOI: 10.1002/cae.21920

SPECIAL ISSUE ARTICLE

Learning and teaching engineering design through modeling and
simulation on a CAD platform

Charles Xie | Corey Schimpf | Jie Chao | Saeid Nourian | Joyce Massicotte

The Engineering Computation Laboratory,
Concord Consortium, Concord,
Massachusetts

Correspondence
Charles Xie, The Engineering Computation
Laboratory, Concord Consortium, Concord,
MA 01742.
Email: charxie@gmail.com

Funding information
National Science Foundation,
Grant numbers: 1348530, 1503196;
General Motors (GM), Grant number:
34871079

Abstract

This paper provides a theoretical perspective of how modeling and simulation on a

CADplatform can be used to teach science concepts and informdesign decisions. The

paper discusses the educational implications of three recent advancements in CAD

technologies: system integration, machine learning, and computational design. The

challenges to design energy-efficient buildings that harness solar energy are used as

the engineering examples to illustrate the learning and teaching opportunities created

by the modeling, simulation, and data mining capabilities of the Energy3D software,

which is a CAD tool developed from scratch along the directions of the three

advancements to support engineering research and education. Preliminary results

from students in a physics classroom and an online course shed light on the effects of

these features on guiding student to design cost-effective rooftop solar power systems

for their own home buildings.
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1 | INTRODUCTION

Inworkplaces, engineering design is supported by contemporary
CAD1 tools capable of virtual prototyping—a full-cycle process
to explore the structure, function, and cost of a complete product
on the computer using modeling and simulation techniques
before it is actually built [22,46]. In classrooms, such software
tools allow students to take on a design taskwithout regard to the
expense, hazard, and scale of the challenge. Whether it is a test
that takes too long to run, aprocess that happens too fast to follow,

a structure that no classroom can fit, or a field that no naked eye
can see, students can always design a computer model to
simulate, explore, and imaginehow itmaywork in the realworld.
Modeling and simulation can thereby push the envelope of
engineering education to cover much broader fields and engage
many more students, especially for underserved communities
that are not privileged to have access to expensive hardware in
advanced engineering laboratories. CAD tools that are equipped
with such modeling and simulation capabilities provide viable
platforms for teaching and learning engineering design, because
a significant part of design thinking is abstract and generic,
can be learned through designing computer models that work
in cyberspace, and is transferable to real-world situations.

Some researchers [7], however, cautioned that using CAD
tools in engineering practices and education could result in
negative side effects, such as circumscribed thinking, premature
fixation, and bounded ideation [47], which undermine design
creativity and erode existing culture. To put the issues in a

1To simplify the terminology in this paper, CAD includes analysis that is
sometimes also known as computer-aided engineering (CAE). In fact, we
adopt a much more inclusive view of CAD to encompass conceptual
design, geometric modeling, solid modeling, numerical simulation,
visualization, automation, documentation, and communication, in addition
to just technical drawing on the computer that many people still equate
CAD to.
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perspective, these downsides probably exist in any type of
tools—computer-based or not—to various extents, as all tools
inevitably have their own strengths andweaknesses. As amatter
of fact, the development history ofCAD tools can be viewed as a
progress of breaking through their own limitations and
engendering newpossibilities that could not have been achieved
before. To do justice to the innovative community of CAD
developers and researchers at large, we believe it is time to
revisit these issues and investigate how powerful modeling and
simulation capabilities of modern CAD tools can address
previously identified weaknesses.

Thegoalof thispaper is toprovide a reviewof this topicbased
on our work in the field of secondary engineering education
where the target learners, the application environments, and the
expected outcomes differ significantly from those in collegiate
and professional settings. We will discuss the opportunities and
challenges brought by state-of-the-art CAD software to second-
ary engineering education,which is growingmore important than
ever as engineering education has been officially incorporated
into the Next Generation Science Standards (NGSS) for K-12
schools in the United States [37,40] and considered bymany as a
viable pathway to integrated STEM education [39]. We begin
with elucidating the learning and teaching opportunities enabled
by themodeling and simulation capabilities in cutting-edgeCAD
software in the following section.

2 | THE EDUCATIONAL POTENTIAL
OF CAD SOFTWARE

The view that CAD is “great for execution, not for learning”
[7] might be true for the kind of CAD tools that were
developed primarily for creating 2D/3D computer drawings
for manufacturing or construction. That view, however,
largely overlooks three advancements of CAD technologies:

1) System integration that facilitates formative feedback: Based
on fundamental principles in science, the modeling and
simulation capabilities seamlessly integrated within CAD
tools [61,67] canbeused to analyze the functionof a structure
being designed and evaluate the quality of a design choice
within a single piece of software. This differs dramatically
from the conventional workflow through complicated tool
chaining of solidmodeling tools, pre-processors, solvers, and
post-processors that requires users tomaster quite a variety of
tools for performing different tasks or tackling different
problems in order to design a virtual prototype successfully.
Although the needs for many tools and even collaborators
with different specialties can be addressed in the workplace
using sophisticated methodologies such as 4D CAD that
incorporate time or schedule-related information into a
design process [25], it is hardly possible to orchestrate such
complex operations in schools. In education, cumbersome

tool switching ought to be eliminated—whenever and
wherever possible and appropriate—to simplify the design
process, reduce cognitive load [21], and shorten the time for
getting formative feedback about a design idea. Being able to
get rapid feedback about an idea enables students to learn
about the meaning of a design parameter and its connections
to others quickly bymaking frequent inquiries about itwithin
the software. The accelerated feedback loop can spur
iterative cycles at all levels of engineering design, which
are fundamental to design ideation, exploration, and
optimization. We have reported strong classroom evidence
[8] that this kind of integrated design environment can
narrow the so-called “design-science gap” [2,60], empower-
ing students to learn science through design and, in turn,
apply science to design.

2) Machine learning that generates designer information: For
engineering education research, a major advantage of
moving a design project to a CAD platform is that fine-
grained process data (e.g., actions and artifacts), can be
logged continuously and sorted automatically behind the
scenes while students are trying to solve design challenges
[65]. This data mining technique can be used to monitor,
characterize, or predict an individual student's behavior and
performance [51,62,64] and even collaborative behavior in
a team [50]. The mined results can then be used to compile
adaptive feedback to students, create infographic dash-
boards for teachers, or develop intelligent agents to assist
design. The development of this kind of intelligence for a
piece of CAD software to “get to know the user” is not only
increasingly feasible, but also increasingly necessary if the
software is to become future-proof. It is clear that deep
machine learning from big data are largely responsible for
many exciting recent advancements in science and
technology and has continued to draw extensive research
interest [19]. Science ran a special issue on artificial
intelligence (AI) in July 2015 [56] and, only 2 years later,
the magazine found itself in the position of having to catch
up with another special issue [3]. For the engineering
discipline, CAD tools represent a possible means to gather
user data of comparable magnitudes for developing AI of
similar significance. In an earlier paper [64], we have
explained why the process data logged by CAD software
possess all the 4Vcharacteristic features—volume, velocity,
variety, and veracity—of big data as defined by IBM [24].

3) Computational design thatmitigates design fixation: In trying
to solve a new problem, people tend to resort to their existing
knowledge and experiences. While prior knowledge and
experiences are important to learning according to theories
such as constructivism [43] and knowledge integration [31],
they could also blind designers to new possibilities, a
phenomenon known as design fixation [11,12,26,32,41]. In
the context of engineering education, design fixation can be
caused by the perception or preconception of design subjects,
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the examples given to illustrate design principles, and
students’ own previous designs [68]. As it may adversely
affect engineering learning to a similar degree as “cookbook
labs” underrepresent science learning, design fixation may
pose a central challenge to engineering education (though it
has not been thoroughly evaluated among young learners
in secondary schools). Emerging computational design
capabilities of innovative CAD tools based on algorithmic
generation and parametric modeling can suggest design
permutations and variations interactively and evolutionarily
[6,16,28,34,54], equivalent to teaming students up with
virtual teammates capable of helping them explore new
territories in the solution space.

These three aspects, which can all be considered as the
results of applying modeling and simulation to engineering
design to some degree, have the potential to transform CAD
software from pure engineering tools into powerful learning
environments that promise to boost engineering education at
the secondary level, as further explained in the next section.

3 | CHALLENGES IN SECONDARY
ENGINEERING EDUCATION

Unlike college students and professional engineers, young
students in middle and high schools have yet to develop
abstract mental models and design thinking skills that
empower them to imagine and reason about engineering
systems that they are challenged to design. They frequently
need instructional support like formative feedback to help
them forge their mental models and shape their design
intuition. These essential elements for engineering education
are often insufficiently provided in real classrooms as they
require tremendous efforts from teachers for individual
students. When students are challenged to solve complex
open-ended design problems with a large solution space, the
workloads for teachers would escalate to such a high level that
it is infeasible for teachers to guide each and every student
through the entire design process. In many complicated
situations, even though teachers are available to provide
instruction, accurate assessment of students’ subtle design
decisions and proper recommendations for their next steps
can only be achieved through systematic analyses of their
work that may be too time-consuming to be practical. On the
other hand, it is important to also note that engineering design
is essentially an inventive process and should be taught as
such [14]—any reduction of engineering design to step-by-
step “follow-me design” is a violation of the core principle of
engineering. Although creativity is a fundamental element of
engineering, a recent literature review reveals that very little
is known about how to teach for creativity [49]. In cases when
unleashing student creativity is an expected outcome,

teachers must find ways to stimulate students’ imagination,
break their fixation, spur their exploration, and even manage
their emotions [53]. However, studies found that, while many
teachers value the concept of creativity, there exists a
discrepancy between their claims of valuing creativity and the
realities of their classrooms [9]. A poor understanding of
creativity, the lack of authentic engineering design experi-
ences among teachers, the scarcity of tools that support
student to explore freely, and the curricular restrictions
imposed by the high-stakes testing environment can all
contribute to the difficulties in creativity education.

These challenging areas of engineering learning and
teaching are exactly where modern CAD software can
demonstrate their extraordinary value as educational tools.
Modeling and simulation in CAD software can be used to
generate formative feedback to students based on computa-
tionally analyzing their work in real time, removing a large part
of the burden of formative assessment on teachers. Feedback
can be delivered through rich, manipulable visualizations and
graphs that convey important information in a vivid and
efficient way. Computational generation of novel solutions
using exploratory tools like parametric or generative design
provides teachers a promising technology to stimulate students
in ideation and lead them to think outside the box. In the
following sections, we describe two categories of applications
ofmodeling and simulation in ourEnergy3Dsoftware basedon
the system integration and machine learning aspects described
in the previous section (educational applications of computa-
tional design are currently under development in Energy3D
and will be presented in the future). As a brief introduction,
Energy3D is a CAD tool that aims to support anyone to learn to
design renewable energy and energy efficiency solutions in the
real world (http://energy3d.concord.org). It is powered by fast
building energy and solar energy simulation kernels that have
an overall accuracywithin ±5–15% of sensor data, operational
data, or benchmark data. The building simulation part has been
independently validated using the Building Energy Simulation
Test (BESTEST) standardized by the U.S. Department of
Energy and the International Energy Agency for evaluating
various simulation tools [17]. Recently, the software was used
by engineering researchers to design cost-effective renewable
energy systems topowermobile hospitals inwar-torn countries
such as Libya [23]. Despite its power rivaling that of
professional CAD software, it has been proven to be friendly
to students—thousands of middle school students in Indiana
have used it to design sustainable neighborhoods [18].

4 | INFORMING DESIGN WITH
SCIENTIFIC SIMULATION

In this paper, we use building energy simulations [5,10] in
Energy3Das examples to explain how they can support science
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learning and inform engineering design. Two important
features make Energy3D an appropriate tool for learning
and teaching design. The first one is its intuitive interface for
3D modeling (e.g., building-block-based construction of 3D
structures like Minecraft and handy copy/paste support for
objects in 3D space) and its graphical representations of
simulation results (e.g., interactive visualizations of data such
as surface heat maps). Without the extensive support of data
visualizations in Energy3D, modeling and simulation would
have been a data nightmare that overwhelms students with an
ocean of numeric outputs or a black box that yields only final
results without details under the hood for connecting the dots,
as is in many professional building energy simulation
packages. The second one is its predictive power that provides
quantitative results to help students make design decisions.
While it is important for students to acquire conceptual
understanding before they can steer their designs in the right
direction, conceptual understanding alone may not suffice to
make specific decisions that are quantitative by nature. Put it
simply, engineering design is not just about “how it works”
(qualitative conceptual understanding), but “how much it
should be” (quantitative decision making). Without the
accurate results predicted by simulation-based analyses in
CAD software, students would not be able to evaluate their
design choices and arrive at optimal solutions.

4.1 | Visualizing science in design

Many science concepts and engineering principles are related
to invisible properties or processes of the subjects. For
instance, the heat transfer across a building envelope is
unseen but important to the design of a zero-energy building
that, on an annual basis, consumes no more energy than the
amount of renewable energy it generates on the site [33].
Building energy simulations with Energy3D can create visual
representations of heat transfer on top of the building being
designed. For example, the amounts of heat transferred
through different parts of a house at any given time can be
calculated by such a simulation and represented by arrays of
heat flux vectors with different lengths. Such a vectorial
representation immediately suggests that more energy is lost
through the windows than the roofs and walls in the winter
(Figure 1a). Varying the time of the day causes the heat flux
vectors to change their lengths, indicating that more energy is
lost at night than during the day (Figure 1b). Interactive
visualizations like these allow students to see the qualitative
effect of the governing scientific law, which is Fourier's Law
of Heat Conduction in this case, on their own designs.

4.2 | Connecting multiple concepts

Multiphysics simulation is an important capability of
modern CAD software [44] as it allows users to study

complex real-world problems in which multiple types of
physics mechanisms jointly drive the processes (which is, as
a matter of fact, the way Mother Nature works). To this end,
Energy3D couples computational engines of solar radiation
and heat transfer to simulate building energy consumption
and generation. Such a capability provides students with
opportunities and contexts to learn the connections among
concepts across different domains of science. Understand-
ing the interplay among multiple concepts and thinking
about systems design are often critical to engineering
projects, especially when the concepts represent different
directions of design prioritization that must be compromised
to attain an optimal solution. For instance, a cool roof
(Figure 2a) can save energy in the summer by reflecting
more sunlight off and absorbing less heat than a standard
roof [58], but the exact saving depends also on the
insulation level of the roof. The more the roof is insulated,
the less its exterior color matters, giving the designer more
flexibility to choose any color or material for the roof.
Understanding this relationship requires students to connect
the physics of light absorption at the exterior surface of the
roof and the physics of heat transfer between the inside and

FIGURE 1 Modeling and simulation in a CAD environment can
provide salient, dynamic visualization of science concepts and
engineering principles that can inform engineering design at each
step. (a) A visualization of heat fluxes across the building envelope of
a house in Massachusetts at noon on January 1st shows the heat
losses at different parts of the house (e.g., more heat escapes from the
windows than from the walls or roofs); (b) The visualization shows
that more heat is lost at midnight than at noon as indicated by longer
heat flux vectors on the building envelope
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outside of the house through the cross-section of the roof. In
Energy3D, the former is represented by the solar radiation
color map on a surface and the latter by the heat flux vectors
superimposed on the surface (Figures 2b and 2c). The net
effect of solar radiation and heat transfer on the annual
energy consumption of a house can be represented by an
area chart that shows the monthly usages (Figure 2d). The
visualization of heat flux vectors may also remedy a
possible misconception that solar radiation warms up the
house through the roof in the winter. In fact, in a cold
climate, the sun may never give energy directly to the house
through the roof. The reason that a dark-colored roof may
reduce the heating cost in the winter is because the solar
heating raises the temperature of the exterior surface, lowers
the temperature difference across the cross-section of the
roof, and thereby reduces the heat loss through it. Students
can observe this effect by comparing the lengths of the heat
flux vectors on the southern part of the roof that faces the
sun and the northern part that does not face the sun as much
(not shown in the images in Figure 2) or the lengths of the
heat flux vectors on the dark-colored roof and those on the
light-colored one (shown in Figure 2b).

4.3 | Driving design decisions

Trade-off and optimization among design variables that
sometimes have conflicting effects on the system perfor-
mance are central tasks in engineering design. For example,
although a house in a cold climate tends to lose more thermal
energy through its windows in the winter, it is also heated by
the solar energy that shines through them during a sunny day.
The latter is important in the design of passive solar buildings
[29] that can dramatically save energy for heating and cooling
[20]. Exactly what the optimal dimension of a custom-sized
window should be or howmany fixed-sizewindows should be
used depends on the balance between the energy loss through
heat transfer and the energy gain through solar radiation. The
thermal loss and radiative gain through a window are
controlled by the U-value (the inverse of the R-value) and the
solar heat gain coefficient (SHGC) of the window,
respectively. To complicate the matter even further, the
balance is also largely affected by the location of the house,
the seasonal differences of the environmental factors (e.g., the
air temperature and the sun path), and the orientation of the
windows (e.g., south-facing or west-facing). As such,
designing a zero-energy house in southern Maine is very
different from designing a zero-energy house in central
Florida—the former is in Climate Zone 6 (cold climate) and
the latter is in Climate Zone 2 (hot climate) according to the
International Energy Conservation Code [42]. Based on the
typical meteorological year (TMY) weather data [36] of
nearly 700 regions worldwide, Energy3D can accurately
calculate heating and cooling energy usage of buildings at

FIGURE 2 (a) Comparative simulations of a dark- and light-
colored roof connect the concepts of solar radiation and heat transfer
through multiphysics modeling. (b) The solar radiation color map and
heat flux vector field show the solar heating and heat transfer of the
roof on January 1st in Massachusetts; (c) The same for July 1st; (d) A
comparison of the monthly energy usage curves of the two houses
indicates that the one with the dark roof uses a bit less energy in the
winter but significantly more in the summer
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different locations around the world. With this capability,
Energy3D simulations empower students all over the world to
explore sustainable building design in their own areas, as
illustrated by the examples for Portland, ME and Orlando, FL
in Figure 3. Although one can argue that common sense can
also be used to reason about the examples, only quantitative
results predicted by numerical simulations can help students
make a precise decision about exactly how large the window
area should be in an optimal design of fenestration under a
specific circumstance.

5 | INFORMING DESIGN WITH DATA
MINING

In the previous section, we have shown how results from
modeling and simulation in a CAD tool can be visually
presented to students to inform their design decisions. The
information is often provided to students based on evaluating
the current states of their designs without concern for their
past states. But if an experienced instructor were available to
help, he or she might also review a student's past actions to get
some ideas about how the student arrived at the current
solution. This information can be useful in making sense of
the student's current work and deciding the appropriate
instructional strategy for his/her next step. It is, therefore,
valuable for an intelligent CAD system to also simulate, to

some extent, this kind of human capability. This research area
is known as user modeling in the context of human-computer
interaction [15] and learner modeling in the context of
intelligent tutoring systems [55]. In a CAD system, we can
more explicitly call it designer modeling. Generally speaking,
designer modeling draws upon one or more learning or design
theories, targets a set of learning or design goals, and uses the
designer's process data as input. In the current version of
Energy3D, process data primarily include actions, artifacts,
simulation results, and educational assessments. These data
encompass rich information that may shed light on the quality
of learning processes and the evidence of learning outcomes.
In a sense, the data may reflect students’ design thinking and
decision making processes, which are not only assisted by the
CAD tool but also regulated by interventions outside it such
as brainstorming and mentoring. This instructional sensitivity
of the CAD logs, confirmed in a June 2013 field test involving
70 high school students [65], is a proof that the type of process
data logged in a piece of CAD software like Energy3D is
capable of capturing the effects of outside-the-software
interventions and can be used to characterize temporal
patterns in students’ responses to interventions. In this
section, we will discuss the collection and visualization of
process data, introduce the concept of intelligent agents for
generating adaptive feedback, and present our work in using
the regular expression technique to mine patterns in event
sequences.

FIGURE 3 Results of building energy simulations in Energy3D are displayed as graphs. Upper images: The hourly heat usage of a house vs.
the hourly solar heat gain through its windows on January 1st in Portland, ME (a) and Orlando, FL (b), respectively, revealing that solar heating
decreases the energy use of the house in Portland (which needs heating during the day to maintain the indoor temperature at 20 °C) but increases
the energy use of the house in Orlando (which needs air conditioning during the day to maintain the indoor temperature at 20 °C). Lower images:
The hourly energy loss and gain through a south-facing window and a west-facing window of the same size on January 1st in Portland, ME (c),
and Orlando, FL (d), respectively, revealing that the solar heat gain from the west-facing window peaks in the afternoon and is much less than
that from the south-facing window at both locations
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5.1 | Seeing design processes

Unlike many other CAD tools, Energy3D was created with a
vision to support machine learning from fine-grained process
data and eventually develop an intelligent system for guiding
engineering design learning and practice [63]. We have
incorporated data mining features in the software architecture
throughout the development process. For example, upon
receiving an undoable action such as adding a solar panel, the
Undo Manager of Energy3D will signal its Process Logger to
record all of the information related to it, such as the position
of the solar panel, the type of the solar panel, and the
timestamp of the action. Non-undoable actions are also
handled by the Process Logger in a similar way. As a result,
Energy3D is capable of capturing all student work unobtru-
sively in the background for “stealth assessment” [52]. For
readers who are curious about how the data look like, Figure 4
shows three graphical representations of the logged action
data—histogram, scatter plot, and cumulative graph—that
somewhat resemble Atman, Deibel, and Borgford-Parnell's
three visual representations for engineering design [4] but
with flexible controls of process granularity from individual
user interface actions to categorized domain level tasks. A
critical benefit of collecting this kind of fine-grained process
data are that they can be used to reconstruct the entire design
and learning process with all the important details restored for

analysis. This analysis technique, which we call “design
replay,” has been used by researchers to investigate students’
design behaviors entangled with their self-reflection pro-
cesses related to the application of science concepts [45]. It
may also be worthwhile to explore in the future whether the
design replay can be used by teachers as a monitoring tool to
observe students’ learning processes and by students as a
metacognitive tool to review their own design processes.

5.2 | Creating adaptive feedback

The ultimate reason for collecting the process data during
design is to provide just-in-time feedback to students based on
analyzing these data in real time. The general framework of
intelligent agents [48] best explains how such formative
feedback can be realized in Energy3D (Figure 5). An
intelligent agent consists of “sensors” and “actuators”
connected to an environment in which it operates (in our
case this is a CAD environment). Sensors are used to monitor
design events and collect design artifacts from students and
actuators to invoke feedback to them. A pedagogical model
can be implemented by using an event-condition-action rule
engine that regulates the designer's behavior based on mining
the sensor data and responding accordingly using a decision
tree model. For instance, similar to conformance checking in
business process mining [59], such a pedagogical model can
be used to check the conformance of students’ design
procedures to certain expectations. In education, confor-
mance checking may constitute a large part of teachers’ day-
to-day work. In engineering design, for example, there are
circumstances under which several types of action must all
happen, and evenmust happen in a given sequence, in order to
solve a problem. For instance, if students have run simulations
within the CAD software, data collection and analysis tasks

FIGURE 4 Three graphic representations of actions logged in
about 80 min. (a) Histogram shows the total number of actions within
each time bin. (b) Scatter plot shows the number of actions of
different types within each time bin. (c) Cumulative graph shows the
growth of the total number of actions of different types. Each
representation reveals a different view of the data or a different aspect
of the process

FIGURE 5 Design instruction in a CAD environment can be
personalized using a simple reflex agent that observes a designer's
actions through “sensors” and reacts accordingly through “actuators.”
An event-condition-action rule engine provides the pedagogical
intelligence
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are expected to follow in order to complete a meaningful loop
of inquiry. Intelligent agents capable of automatically
checking conformance of design behaviors may free teachers
up from this laborious work and allow them to focus on high-
level instruction.

5.3 | Mining event sequences

The event data stream recorded by the Process Logger of
Energy3D is high-dimensional as there are a myriad of action
types and each may have many attributes. As the first step to
reduce the dimensionality andmake the problem tractable, we
can code the event sequence into a text string, with a single
character representing a type of action (or multiple characters
if the number of types needed to be addressed exceeds the
limit of the alphabetical set), similar to the coding of the
amino acid sequence of a protein in bioinformatics. For
example, in the string shown in Figure 6, A stands for an event
of simulation-based analysis, W for an event of changing the
insulation value of a wall, P for an event of modifying a
building other than W that is consequential to its energy use
(e.g., changing the color of a wall, resizing a window, adding
a solar panel to a roof, etc.), an asterisk for an event that is
irrelevant to the current analysis, a question mark for a help-
seeking event, a number sign for an event of recording data,
and an underscore for a pause longer than a threshold. After
translating the event sequence into a text string, we can then
use a regular expression (regex)—a sequence of characters
that define a search pattern—to check whether an expected
condition can be found in the string (so as to inform a
pedagogical agent to react accordingly). In the following
paragraph, we will explain this regex technique with a
concrete example.

This example is concerned with a design step that requires
students to choose a proper insulation value for a wall.
Assuming that students do not fully understand the relation-
ship between the insulation value of a wall and the energy use
of a building, they must first conduct a series of experiments
to explore the relationship. This can be considered an inquiry
process embedded to inform design and we want to make sure
that students follow the principles of scientific inquiry. Bruce
Alberts, former president of the National Academy of
Sciences and former Editor-in-Chief of the Science Maga-
zine, defined one of the fundamental principles of inquiry by
arguing that “One of the skills we would like all students to
acquire through their science education is the ability to

explore the natural world effectively by changing one variable
at a time, keeping everything else constant” [1]. In our case,
the occurrence of bothW and P between two As indicates that
the student changedmultiple variables at a time, rendering the
results of energy simulations inappropriate for assessing the
effect of the insulation value. The proposed regex technique
provides a simple solution. The regex (A([^P]*?W+?[^P]*?)
(?= A)) + ? can be used to find whether there are alternating
patterns between W and A, and whether the intermediate
events include P, tolerant of any other events that do not
violate the inquiry principle (such as collecting data or
seeking help). A pattern that has multiple alternatingW and A
characters suggests a high probability of inquiry, but the
existence of other types of energy-changing modification
events such as P may compromise the rigor or weaken the
probability and should be called out by the pedagogical agent.
Regular expressions like this can thus serve as concise pattern
indicators for the agent to rapidly characterize student
behavior and check their performance. As regex is supported
by many programming languages, our approach can be easily
generalized to other software as well.

6 | FIELD TESTS

To test the affordances of leading-edge CAD software like
Energy3D described in this paper, we conducted two small-
scale field tests with U.S. high school students in two different
settings in 2016 and 2017, respectively. Both tests used our
Solarize Your Home Project based on Energy3D, which is
briefly described as follows.

6.1 | The Solarize Your Home Project

The Solarize Your Home Project is an instructional module
that supports students to model their own home buildings
using Energy3D and design three different photovoltaic solar
panel arrays to meet their families’ needs for electricity.
Students are encouraged to work and think like solar
engineers while their parents pretend to be the “clients.” As
Energy3D can import Google Earth images based on
addresses or geolocations, students can easily sketch up their
own home buildings on top of the satellite images. Once they
create 3D models of their home buildings, they add solar
panels to the roofs and calculate the daily or yearly outputs
using solar energy simulations in Energy3D. They can also

FIGURE 6 A text string can be used to represent a sequence of events occurred during a design process. Colors are for visual cuing. The
meaning of the characters are explained in the text

8 | XIE ET AL.



use the Group Analysis tool to select a group of solar panels
and compare their daily or annual yields to decide which part
of the roof is more favorable for electricity generation. The
main goal of a rooftop solar design challenge is to meet the
annual energy usage of the home building as much as
possible. Energy3D allows students to enter the actual
monthly kilowatt hour (kWh) usage from their electricity bills
and overlay this information on top of the simulation results
so that they can compare the outputs of their designs with the
goal more easily. An important constraint is that the solar
power system must be under a certain budgetary limit. To
address the possibility of large differences in solar potential
across home buildings and provide students an opportunity to
explore solar array systems with more options, students are
given three budgetary levels to design for: $20,000, $40,000,
and $60,000. The total project cost is determined solely by
adding up the cost of solar panels that also factors in
installation costs and other overhead costs. Students are given
three different models of solar panels from different
manufacturers to choose from, with the solar cell efficiencies
ranging from 16% to 22% and higher-efficiency panels
costing more than lower-efficiency ones. While designing,
students fill out a design report. The report contains a
summary of each of their designs and its performance against
the criteria, a series of scaffolding questions to guide their
analysis of each design, and a trade-off matrix where students
list the advantages and disadvantages of each design in order
to help them make a final recommendation to their parents.

6.2 | Research participants

The 2-week pilot test of the Solarize Your Home Project in
2016 involved 27 ninth-grade students (17 girls and 10 boys)
in a physics class of an urban high school in Massachusetts of
the United States. After a year of development and
improvement, we tested the design project again in 2017
with 37 high school students (9–12th grade, mostly from the
northeastern part of the United States) who enrolled in two
sections of a 4-week online summer course administered by
the Virtual High School (VHS). Among the online students,
however, only 25 (15 girls and 10 boys) consented to
participate in our study. This paper reports the results from the
students in two field tests who gave us permission to use their
data in the study.

6.3 | Data collection and analysis methods

Several types of data were collected from both the in-class and
online cohorts of students, including pre/post-test of science
and engineering knowledge, embedded assessments in the
form of design journals, students’ process data as captured in
Energy3D, self-reports and CAD models of students’ final
designs, and an exit survey about the overall learning

experience. We will discuss these types of data and the
corresponding analysis methods in the following sections.

7 | ASSESSMENT OF KNOWLEDGE
GAINS USING PRE/POST-TESTS

Before starting the Solarize Your Home Project and
immediately upon the completion of the project, students
took a knowledge assessment with 15 questions related to the
understanding of science and engineering knowledge relevant
to the project. These pre/post-test assessments were adminis-
tered only in the two online classes in 2017 as we had not
completed the development of the assessment items back in
2016.

7.1 | Pre/post-test assessment items

The pre/post-tests consist of open-ended responses and
multiple-choice questions. The assessment items include
several released questions from various public sources, such
as the North Carolina Earth/Environmental Science Final
Exam, Earth and Space Sciences by Educational Testing
Service, and Earth Science in the California Standards Test,
that are applicable to this study. In addition, we also
developed ad hoc items sensitive to this project following the
principles of Evidence-Centered Design (ECD) for educa-
tional assessments [35] and addressing the need to measure
the three-dimensional learning as required by NGSS [38]
(e.g., “include multiple components that reflect the connected
use of different scientific practices in the context of
interconnected disciplinary ideas and crosscutting con-
cepts”). For example, a question adopted from the California
Standards Test asks students why more solar energy reaches
an equatorial region than a polar region. But this question
gauges only students’ understanding about a particular
concept in earth science. To probe students’ ability to transfer
and connect this science concept to engineering practice, we
couple it with the following question “For homes located in
Miami, Florida (latitude 25.8° N), on which of the following
roofswould the same number and type of solar panels produce
most electricity (assuming that the solar panels only take up a
quarter of the roof space)?” The question shows images of a
steeply-pitched roof, a mildly-pitched roof, and a flat (zero
pitch) roof. A similar question further tests students’ ability to
apply their science understanding of the solar path to make an
engineering decision: “The house below is located in Boston,
Massachusetts (42° N, 71° W). The homeowner plans to
install a solar electric system on the rooftop. Four possible
locations for the solar panels are shown in the image. Explain
why each location either is or is not a good place for
maximizing the electricity production of the solar panels.”
Assessment items like these can be used to test our assertion
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that a CAD tool like Energy3D can help students learn
knowledge much beyond learning how to use the tool per se.

7.2 | Pre/post-test results of science and
engineering learning

We used a paired t-test to compare the means of students’
answers to seven multiple-choice questions in the pre/post-test
assessments in order to determine whether there was any
observable change in their knowledge.After eliminating students
who did not complete either the pre or posttest, there were 23
valid paired pre/post-test results (Table 1). The t-test reveals the
two means are distinct, with a p-value of less than 0.00015,
suggesting the intervention resulted in significant learning gains
for students. To better understand the strength of students gains,
we calculated the effect size of the difference through Cohen's d.
The results indicated a large effect size with Cohen's d = .954,
suggesting the intervention had a strong impact on students
learning. While these results appear to be promising, it must be
cautioned that the effect was observed with a small sample size.

8 | ANALYSES OF EXIT SURVEYS,
FINAL DESIGNS, AND SELF
REPORTS

We administered an anonymous exit survey with participants
in both the 2016 physics class and 2017 online classes. The
results from the two 2017 online classes show that, when asked
whether students would recommend the Solarize Your Home
Project to others, 19 out of 23 respondents indicated that they
would, three indicated that they would not, and one did not
respond to this specific question.Of the 19 positive responders,
twelve would recommend unconditionally and the rest would
recommend conditionally (usuallywith a condition like “this is
a good class if you like engineering or science”). Partly because
the test in the 2016physics classwas completed right before the
summer break, we received only ten responses in our exit
survey. The results show that seven out of those ten responders
would recommend, two would not, and one did not respond to
the question. Box 1 shows a few student quotes from both the
in-class and online cohorts that can be used to cross-validate
their recommendations. We conclude that students’ experi-
ences were overall positive in both settings.

Inmany engineering projects, the quality of students’design
work can serve as an arguably reliable indicator for evaluating

their performance and learning. Figure 7 shows a collection of
eight students’ final designs of residential rooftop solar energy
systems from the 2017 online cohort (unfortunately, for some
technical reasons, we were able to collect the final design
models from only 12 students). We found that the majority of
these 12 students were able to sketch up realistic 3D models of
their own home buildings—some of them are fairly complex as
shown in Figure 7—with the online support provided by the
instructor at VHS, who did not have any previous experience in
CAD software and completed a 10-hr of professional
development only prior to the online course. On the one
hand, this is a remarkable outcome considering the fact that the
asynchronous instructional support in an online course is
commonly perceived as insufficient for supporting complex
authentic project-based learning. Part of this success might
therefore be attributable to the feedback mechanisms in
Energy3D built to help students evaluate their design choices
with modeling and simulation at any time, often in the absence
of an instructor's input. On the other hand, we have to caution

Box 1. Student quotes from the Exit Survey

“I found this course to be enjoyable and educational.
It was neat to be able to design a house and install
solar panels on it, see how the sun travels, and what
areas on a house receive the most sun in a day.”
(Online student)
“It is an excellent opportunity to learn about a topic
that, in my opinion, there aren’t very many
opportunities to learn about. The class was a good
mix of science and engineering, and I enjoyed
learning about the processes that are required to
design an efficient solar system.” (Online student)
“...it helps people learn more about solar panels
easier. You don’t really have to google any of the
answers since everything is just right there, in the
program. I would also recommend this to other
students because it's a fun way to learn, and it
definitely interests anyone that participates in it.” (In-
class student)
“. . .it's a refreshing project to do in an Engineering
class and you can apply many concepts such as
design and redesign.” (In-class student)

TABLE 1 T-test results of pre/post-test difference

Measure Pretest mean (SD) Posttest mean (SD) T-score (n) p-value

Result 3.30 (1.40) 4.48 (1.47) 4.58 (23) <0.00015***

***p< 0.001.
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that this outcome could also be due to the fact that these online
students were motivated enough to invest their time in the
project as they signedup for the summer course in the first place.

Students justified their solar system design with evidence
collected from the simulations that they performed with
Energy3D. While solving the design challenge, students were
asked to record their iterations and what they learned from
analyzing their designs using Energy3D simulations. Analyzing
these design journals, whichwere collected through the learning
management system used in the online course, we found that
students reported three major types of insights from using the

annual, daily, and group solar yield analysis tools in Energy3D.
First, students discovered how the parameters of the solar panels
negatively or positively affected the outputs. By testing out
several solar panel parameters, students were able to understand
what they represent andhow they affect the output. For example,
one student wrote “I also learned that by increasing the
efficiency of a small portion of panels can greatly increase the
amount of energy produced...” This insight might have helped
the student choose high-efficiency solar panels for small roof
space that cannot fit many solar panels. Seventeen of the 22
students in the online cohort reported their findings of this kind

FIGURE 7 Sample designs of residential rooftop solar power systems from students who enrolled in an online summer course administered
by the Virtual High School in 2017

XIE ET AL. | 11



in their design journals. Second, students learned about the
hourly outputs of solar panels over the course of a day and across
different seasons of the year. For example, one student stated
that “these analyses have shown me that the amount of energy
produced by the panels is at its maximum in the middle of the
year andminimum in the beginning and end of the year. . .” Ten
students reported that examining the graphs produced by the
analysis tools revealed the temporal patterns of solar radiation to
them and led them to try different strategies for optimizing their
solar arrays. Third, students learned about the relationship
between the location of a solar panel on the roof and the
orientation of the sun in the sky. One student explained that “I
noticed that the incidence angle was closer to being zero when
the panels were farther down on the roof. . .” Seven students
reported learning about this detailed relationship. By systemati-
cally examining the performance of solar panels in different
locations relative to the sun, they began to discover the
importance of solar panel orientation to the electricity output.

9 | QUALITATIVE ANALYSIS OF
PROCESS DATA

In this section, we present the results of qualitative case studies
of two students who completed a high-performance design and
a low-performance design, respectively, of a rooftop solar
system for their own houses from the 2016 pilot test in the
physics classroom where the process data logs were collected.
Case studies take a holistic view at subjects of interest and
promote incorporating all relevant data and details about said
subjects or cases into the analysis [66]. Case studies allow us to
capture the richness of students’ action logs and also to
compare students’ full design processes. Additionally, data
visualization was used to represent students’ action logs as
visualization can integrate many different types of data into
“beautiful evidence” [57] (see also Figure 4).

The performance of a student design was measured
primarily by the cost effectiveness, which is calculated as the
total cost of the solar panel array divided by the annual
electricity output of the system (i.e., the cost per kWhgenerated
by the solar panels). A lower cost per kWh is suggestive of a
better design. The two selected cases demonstrate different
degrees to which students utilize the modeling and simulation
capabilities of Energy3D. Additionally, the cases represent
some of the variations typically observed in students’ final
designs. Thus, these cases can shed light on the way in which
students use the CAD software to arrive at their final designs.

9.1 | Case I: A high-performance design

Figure 8a shows the recorded actions over the course of the
project in the first case. Each gray band in the graph represents
the class period of each day. The lower portion of the graph

shows the student's overall level of activity. The upper portion
shows his use of analytical tools. Note that the gray bands are
only as wide as the total duration of time in which an action was
takenand recordedbyEnergy3Dwithin the class period. Inother
words, if a student takes no more action in the last 15 min of the
class period, the log of the daily activity is shortened by 15min.

Our analysis focuses on finding clues from the process
data about how visual energy simulations in Energy3D
facilitate students to develop understandings of science
concepts and become informed by the conceptual under-
standing. Figure 8a indicates that the student was wrapping up
the 3D model of his house on the third day and started the
solar array design after that. The yellow bar in the upper area
of the gray band for the third day represents the period in
which he used the Heliodon, which is a tool in Energy3D for
simulating and visualizing the path of the sun across the sky at
different times of the day on different days of the year for
different locations on the Earth. The Heliodon allows students
to examine howmuch sunlight each part of a house gets at any
time and make connections to the sun's position and path
relative to the building under investigation. Without

FIGURE 8 (a) A graph that shows the overall activity of the
student in Case I. The analytical activity using simulations is also
shown in the upper part. (b) The final design of the student
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interacting with the Heliodon, students would most likely
miss the opportunity to develop a holistic understanding of the
sun path, which is fundamentally important to solar energy
engineering. The red circles along the upper part of
Figure 8a indicate instances when the student used the
Heliodon in conjunction with an animation tool that simulates
the sun's continuous movement on a given day. The larger the
circle is, the more frequently the student ran the animation to
observe the solar radiation on the building throughout a day.
During the use of these simulation tools, the student also
changed the date to explore the seasonal differences. These
actions occurred from time to time during the 5th day as he
moved on to the final stage of his design.

Running the simulation of the sun path is helpful in
developing conceptual understanding, but students need
quantitative results to inform their designs. The blue squares
in Figure 8a indicate the times at which the student ran the
Annual Yield Analysis tool, which predicts the yearly output
of the solar array system under design. As can be seen in
Figure 8a, the student started to use this simulation tool on the
5th day and continued to use the tool several times on the 6th
day, when he had to compare multiple designs and evaluate
their relative performances. At the culmination of the project,
the student finished three different designs with the best one
achieving a cost effectiveness of $2.04/kWh.

9.2 | Case II: A low-performance design

In this case, the logged data shows that the student was highly
active at the beginning (the 1st day) and toward the end of the
project (the 5th day), as seen in Figure 9a. But he was
somewhat inactive in the middle of the project (the 3rd and
4th days). The gray bars in the upper areas of
Figure 9a indicate the student was using the Shadow Analysis
tool, which visualizes the shadows casted by surrounding
trees and different parts of the house on the roof, the walls, or
the ground. Exploring shadows can help students identify
areas of the roof where the solar panels should be installed and
evaluate whether a tree should be removed to boost the
outputs of the solar panels. On the 5th day, this student
performed the only annual yield analysis for his design—he
never ran the simulation analysis again. The lack of
information from simulations was probably responsible for
a much less cost-effective final design with $3.58/kWh (high
investment, low return), compared with the student in Case I.

9.3 | Comparing the two cases

At the bare minimum, the logged data reveal that the student
in Case I was active a full day longer than the student in Case
II. Our records of student absences show that both students
attended the same number of days. It appears the student in
Case II may have been disengaged in one of these days. Note

that, while Case I had greater activity spikes on the action
graph, some caution may be needed to interpret the results as
some of the actions, such as rotating a building or viewing the
scene from different angles, may not be directly consequential
to the final design. Furthermore, action frequencies alonemay
not be a reliable gauge for measuring students’ final product
as students may move through the design at different speeds.
However, where students’ differences in action may matter is
their use of modeling and simulation tools within the CAD
software. The student in Case I actively used theHeliodon and
animated the sun path across seasons, which may have
informed him of better locations to position the solar panels.
Indeed, the final design of the student (Figure 8b) shows that
he placed the majority of the solar panels on the south-facing
part of the roof where they receive more direct solar radiation,
whereas the student in the other case placedmany solar panels
on the north-facing side of the roof where they receive much
less direct solar radiation (Figure 9b). Furthermore, by
analyzing several design alternatives, the student in Case I
may have acquired a greater picture of how the solar system
can be optimized to generate more electricity and increase the

FIGURE 9 (a) A graph that shows the overall activity of the
student in Case II. The analytical activity using simulations is also
shown in the upper part. (b) The final design of the student
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cost effectiveness. In contrast, although the student in Case II
did use the ShadowAnalysis tool, a thorough analysis of all of
his actions suggests that he never changed the time and date or
ran an animation. It is, therefore, reasonable to conclude that
he was yet to develop a conceptual understanding of the
science involved sufficiently deep to inform his design and, as
a result, his design decisions were made with limited
information and understanding. Through this comparative
analysis, we can start to see the differences in students’
interactions with the modeling and simulation tools built in
Energy3D and the relationship between these differences and
their design performances. It is important to note that this
relationship is not limited to the Solarize Your Home Project.
In a separate study with 83 ninth-grade students on the Zero-
Energy Building Design Project [26], we found that students
substantially improved their knowledge as a result of working
with Energy3D. Their learning gains were positively
associated with three types of design actions—representation,
analysis, and reflection—measured by the cumulative counts
of relevant actions captured by Energy3D.

10 | CONCLUSION AND DISCUSSION

This paper provides a theoretical perspective of how
modeling and simulation on a CAD platform can be used
to teach science concepts and inform design decisions. The
paper discusses the educational implications of three recent
advancements in CAD technologies: system integration,
machine learning, and computational design. Energy-effi-
cient building design challenges are used as the engineering
examples to illustrate the learning and teaching opportunities
created by the modeling, simulation, and data mining
capabilities of the Energy3D CAD software. Scientific
simulation can visualize science in action, connect multiple
concepts, and drive design decisions. Data mining can be used
to see design processes, mine event sequences, and create
adaptive feedback. These features make Energy3D not only a
tool for execution of design ideas but also a tool for learning
of science concepts and engineering principles. Although we
have not explicitly collected data and developed instruments
to zero in how Energy3D may also support creative ideation,
it is possible that the learning of science and engineering
driven by the formative feedback based on modeling and
simulation in Energy3D could directly or indirectly contribute
to the development of idea fluency [13]. This is an interesting
research question that we can address in the future.

Preliminary field test results from a physics classroom and
an online course shed light on the effects of the modeling and
simulation features in Energy3D on guiding engineering
design. The field tests used the Solarize Your Home
Project, which challenges students to design rooftop solar
energy systems for their own home buildings. Participants’

experiences with the project were overall positive, with 26 out
of 33 survey responders indicated that they would recommend
it to others. The analysis of their design journals suggested that
students learned science concepts and understood design
parameters from simulations and used evidence provided by
simulation-based analyses to justify their design decisions. The
comparison of the process data from a high-performance
design and a low-performance design by two different students
reveals how simulation-based analyses informed and regulated
their design processes. It is evident that the first student's
frequent use of analytic simulation tools was responsible for
the higher performance and the second student's lack of using
them was responsible for the lower performance.

Despite these encouraging results, the sample size of this
study is relatively small, potentially limiting the generalizabil-
ity of the conclusions. Nevertheless, as we are planning field
tests of much larger scale in the near future, these initial results
can serve as baseline and guidance for developing better data
mining algorithms and improving formative feedback gen-
erators. Our future work will include investigations of the
effects of formative feedback compiled from modeling,
simulation, and data mining results, which are currently
difficult to separate in students’ learning outcome and process
data. The research scope of this study will also be expanded to
cover the affordances of computational design, which
represents exciting developments in the CAD industry based
on modeling, simulation, and artificial intelligence [27,30].
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