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ABSTRACT 

Design thinking is essential and the core of the design 
process as it helps to achieve the design goal by governing 
design decisions. Therefore, understanding design thinking is 
vital for improving design methods, tools and theories. However, 
interpreting design thinking is challenging because it is a 
cognitive process that is hidden and intangible. In this paper, we 
represent design thinking as an intermediate layer between the 
thought process and design behaviors. To do so, this paper first 
identifies five design behaviors based on the current design 
theories. These behaviors include action behavior, one-step 
sequential behavior, contextual behavior, long-term sequential 
behavior, and reflective thinking behavior. Next, we develop 
computational methods to characterize each of the design 
behaviors. Particularly, we use design action preference 
distribution, first-order Markov chain model, Doc2Vec, bi-
directional LSTM autoencoder, and time gap distribution to 
characterize the design behaviors. The characterization of the 
design behaviors through embedding techniques is essentially 
the latent representation of the design thinking, which is referred 
to as design embeddings. After obtaining the embedding, an X-
mean clustering algorithm is applied on each of the embeddings 
to group the designers.  The approach is applied to data collected 
from a high school solar system design challenge.  The clustering 
results show that designers follow several design patterns 
according to the corresponding behavior, which corroborates 
design embedding effectiveness. Successful implementation of 
this method to identify design embedding can be useful in other 
design research, such as infering design decisions, predicting 
design performance, and identifying design actions 
identification. 
 

Keywords: Design thinking, design embedding, design 
cognition, deep learning. 
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1. INTRODUCTION 
 Design thinking governs how designers apply the design 

principles to generate, evaluate, and represent concepts to meet 
stated goals [1] [2]. In the context of engineering design, design 
thinking refers primarily to the exploration (i.e., divergent 
thinking) and exploitation (i.e., convergent thinking) iterations 
in search of design solutions [3]. More generally speaking, 
design thinking is designers’ cognitive activities during a design 
process in which their decision-making strategies and behaviors 
are guided by their design thinking, and their corresponding 
actions are reflected through the design task. Therefore, design 
thinking works as a bridge that connects designers’ knowledge 
space and design space [4], as shown in Figure 1. A deeper 
understanding of design thinking is vital for advancing design 
theories, methods, and tools. 

However, understanding and interpreting design thinking 
are challenging because it is intangible and takes place in the 
human brain [ref]. During a design task, different designers may 
adopt different design strategies. Thus, the design behaviors that 
reflect their design thinking are different too [Dinal et al.]. This 
is particularly true in complex systems design, where the 
problem often involves various design variables and constraints. 
For example, in one of our previous studies, several design 
patterns were identified in the same solar system design task by 
studying designers’ one-step sequential decision-making 
behaviors [5]. In order to fundamentally understand design 
thinking, various empirical studies have been conducted based 
on different methodologies, such as protocol methods, controlled 
experiments, psychological tests, and neuroscientific 
measurement, such as functional magnetic resonance imaging 
(fMRI) [2]. While existing studies have leveraged the 
advancement in machine learning and data mining techniques in 

mailto:zsha@uark.edu


 2 © 2021 by ASME 

discovering behavioral patterns in design from which we could 
draw insights and inferences about their design thinking [2], little 
research was done on understanding the latent representations of 
design thinking. We define the representation of design thinking 
as an intermediate layer between human designer’s mental 
processes (i.e., the thought process) and their behaviors (i.e., 
actions). Our hypothesis is that the design thinking 
representation is potentially an essential and effective pathway 
to the empirical studies of designers’ thinking.  

Now suppose design thinking is an abstraction and mapping 
of design behaviors at a high-dimensional space, then the 
understanding of design thinking must not be acquired from a 
single behavioral type. If multiple-dimensional design behaviors 
and the corresponding patterns are identifiable, then a series of 
questions are, would the representation of design thinking 
extracted from different design behaviors be different? How does 
the representation of design thinking obtained from each 
dimension of the design behavior look like? What are the ways, 
particularly computational methods, to extract such 
representations?  

As the first attempt to answer these questions, on the one 
hand, we identify five different design behaviors, including 
short-term sequential behavior, long-term sequential behavior, 
contextual behavior, reflective thinking, and design action 
preference, based on current research on design theories. Each of 
these design behaviors is elaborated in Section 2. On the other 
hand, we explore the possibility of using embedding techniques 
from machine learning to transform high-dimensional design 
action data into low-dimensional embeddings, referred to as 
design embeddings, for the latent representation of design 
thinking. In the literature of machine learning, an embedding is 
a low-dimensional vector representation of high-dimensional 
data [ref]. Embedding maps discrete, categorical variables to a 
vector of continuous numbers. Figure 1(b) illustrates the 
connections among design thinking, design embeddings, and 
design behaviors. 

In this study, our assumption is that design thinking is 
reflected by design behaviors in multiple dimensions. Therefore, 
by abstracting and extracting the latent representation of design 
behavioral data in the transformed dimension via embedding 
techniques, design thinking can be better characterized. 

Particularly, we develop an approach that applies different 
embedding techniques to learn design thinking representations 
from designers’ action data.  The scope of this study is focused 
on computer-aided design (CAD) for the ease of data collection. 
However, the approach is applicable in any design context as 
long as the design action data can be collected. This approach is 
demonstrated using the data collected from a high-school student 
CAD challenge where participants are asked to solarize their 
school with the required energy yield and payback period (see 
Section 4.2 for detail). 

The remaining of the paper is as follows. In Section 2, we 
present the literature review on design thinking studies and 
summarize the common representation of design thinking in 
various data types. In Section 3, we present the overall research 
approach and discuss the technical background regarding the 
different embedding techniques adopted in this study. In Section 
4, a case study on the solar system design challenge is presented. 
Also, we discuss the experiment details and data collection 
method in this section. The results are presented and discussed 
in Section 5. Finally, in Section 6, we wrap up this paper by 
drawing conclusions and insights as well as a summary of 
limitations which opens up the opportunities for our future work 
on the topic of design thinking representation.  
 
2. LITERATURE REVIEW 

 
2.1 Representation of design thinking  

Extensive studies have been conducted to study design 
thinking. These studies adopted various ways to represent design 
thinking, such as by using cognitive study (e.g., protocol study, 
controlled experiment), physiological measurement (e.g., eye 
tracking, heart rate, electrocardiography(ECG)), neurological 
signals (e.g., electroencephalogram (EEG), functional magnetic 
resonance imaging (fMRI)) [6].  In protocol and controlled study, 
design data are encoded by ontological design model (i.e., 
function-behavior-design (FBS) design process model), which 
are collected from protocol study or controlled experiment [7]. 
These design data are typically designers’ performed actions [8] 
and are further encoded to a deeper understanding of design 
thinking [9]. The encoded design data is analyzed by different 
computational methods in order to represent design thinking. For 
example, the first-order Markov chain model representing one-
step sequential decision-making behavior is utilized to study 
design pattern [5], [10], hidden Markov model to identify hidden 
design states [8], long short-term memory unit (LSTM) to 
predict future design process stage [11]. In some studies, sketch 
data are collected besides the verbal and design action data [12]. 
Sketching is further encoded using different sketch coding 
methods (e.g., C-sketch method [13]) to represent design 
thinking. 

Design thinking is also studied using various physiological 
measures such as eye-tracking, electrocardiogram (ECG), and 
facial recognition. In the eye-tracking method, eye-tracking 
devices and software capture designers’ eye movement and 
provide gaze point and heat maps of areas of interest [14]. The 
heat maps and gaze points represent designers’ thinking. These 
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data has been used to analyze design creativity [15], to study how 
designers analyze the functionality of a design object [16]. This 
method mainly analyzes how much attention designers put on 
the area of a specific design object. Using ECG, heart rate 
variability (HRV) signals can be recorded and connected to 
mental stress [17]. HRV is measured during the different design 
segments, and the corresponding mental stress is measured. 
Different designers show different patterns of stress according to 
their design thinking [ref].  

Data collected from neurological studies try to connect 
design thinking and brain activity. The two most popular 
methods for neurological studies are EEG and fMRI. While EEG 
measures neural activity via the identification of electrical 
current, fMRI measures brain activity by the brain's blood flow 
using a magnetic field [6]. Typically, EEG data is transformed in 
order to understand different aspects of design thinking, such as 
the transformed power of the sensor measurement for identifying 
the differences between problem-solving design and open-ended 
design [18]. From the EEG data, the power spectral density of 
brain waves is measured, and the correlation between design 
activity and brain waves is analyzed [19]. Data from fMRI are 
images of the brain at cross-sections that provide visual 
reasoning, such as brain activation patterns during design 
ideation [20]. Recent studies conducted by neurocognition 
scientists indicated that when designers engaged in divergent 
thinking, different cognitive domains were activated with the 
tasks that require analysis during the engineering concept 
generation [21]. Design neurocognition researchers also have 
successfully encapsulated the cognitive functioning behind 
engineering design [18]. This empirical research confirmed that 
design thinking is not merely an abstract construct. However, the 
external design behavior regulated by different cognitive 
processes involved during the search of design solutions requires 
further investigation through the study of design actions [22].  

 
2.2 Behaviors in the design process  

The design process involved various behaviors, among 
which sequential behavior is considered as an integral part [23] 
and a natural feature of design competency [24]. Many types of 
research have been conducted to study designers’ sequential 
behavior using the Markov chain model. Typically, the first-
order Markov chain model is utilized to study designer transition 
behavior or one-step sequential behavior. This behavioral study 
is used to identify design patterns [10], [5], to study designers’ 
sequential learning process [25]. The Second-order and higher-
order Markov chain model represents short-term sequential 
behavior. Several studies utilize those models to study the design 
process. For example, to compare the design process between 
two design domains: architects and software designers, second-
order MC has been implemented [26]. The Higher-order Markov 
model is adopted in an agent-based modeling framework to study 
the effect of memory on sequential behaviors [27]. The hidden 
Markov model and Deep learning-based model are used to model 
designers’ long-term sequential behavior. For example, in our 
previous study [5], by using the long-short term memory 
(LSTM) unit, it is identified that designers use both long-term 

and short-term memory in the design process. In the same study, 
the hidden Markov model (HMM) is used to predict long design 
sequences. HMM is also used to extract design strategies to 
create a computer agent that can solve truss design problems 
[28].  

In addition to different sequential behaviors, studies have 
also been conducted on other types of behaviors, such as 
reflective thinking. Reflective design thinking is a conscious 
mental activity that examines designers’ design actions, 
decisions, and inner selves throughout a design process [29]. 
Though the study of reflective thinking is a growing trend, very 
few studies have been conducted on design reflection [30]. 
Goldstein et al. [30] use designers’ electronic notepad and pre-
test and post-test to study designer reflective thinking and found 
that moderately reflective students understood design activities 
better than those with high or low reflectivity. Even though many 
studies on design behaviors have been conducted, most of them 
focus a particular design behavior at a time. However, design 
thinking is not merely a particular design behavior; rather, it is 
an abstraction of design behaviors from multiple dimensions. 
Therefore, to a deeper understanding of design thinking, a study 
on different design behaviors is needed. 
 
3. TECHNICAL BACKGROUND AND RESEARCH 

APPROACH 
In this section, first, we briefly introduce the research 

approach adopted in this study. Next, we present the technical 
background for different embedding techniques.  
 
3.1 Theoretical background 

One of the major contributions of this study is to identify 
five design behaviors for studying the design thinking 
representation. Therefore, before describing the overall research 
approach, we would like to present the rationale of choosing the 
five behaviors, including action behavior, one-step sequential 
behavior, contextual behavior, long-term sequential behavior, 
and reflective thinking behavior. 

The one-step sequential behavior, contextual behavior, and 
long-term sequential behavior are selected based on the mental 
iteration model [31]. Design is a goal-directed problem-solving 
process and can be modeled as an iterative and sequential 
decision-making process. Jin and Chuslip [31] proposed a 
cognitive model to describe the mental iteration during design.  
According to that model, in every design process, several 
cognitive activities occur, such as generate, compose, evaluate, 
etc. Also, different iteration loops are embedded in the design 
process. These loops collectively generate a global loop. Besides 
the global loop, each cognitive activity defines a local loop. In 
complex systems design problems, these loops frequently occur 
as designers go back and forth iteratively between different 
stages to search the design space and take different design 
actions to accomplish required design tasks. Therefore, in this 
study, we propose to use one-step sequential behavior and 
contextual behavior (short-term behaviors) to capture the local 
loop design behavioral patterns and use long-term sequential 
behaviors to capture the global loop iterative patterns.  
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Next, we consider reflective thinking. The core of reflective 
thinking is metacognition and self-monitoring, which help 
designers to reflect experience and knowledge in their actions as 
well as provide feedback to improve the design process [32]. In 
the design process, designers take various modes of reflective 
thinking. For example, some designers use a bigger picture (take 
a longer time to think) while others use a micro-scoping view 
(take a shorter time to think). Reflective thinking behavior 
enables designers to scrutinize their thinking, behavior, design 
process and thus produce higher quality designs [33][34]. 
Therefore, understanding and computationally modeling 
designer reflective thinking are important.  

Lastly, we study designers’ action preferences based on the 
designers’ action preferences. It depicts how frequently a 
designer uses different types of design actions (i.e., the 
distribution of design actions) during the design process. In total, 
five different design behaviors are adopted from three 
dimensions – mental iteration, reflective thinking, and design 
action preferences. We envision that modeling the design 
behaviors from multiple dimensions can help better understand 
design thinking. 

 
3.2 Research approach 

The overall approach starts with collecting the raw design 
action data from different sources such as CAD loggers, design 
documents, etc. This raw design action data contains design 
actions, design-related artifacts, design parameters, etc. After 
collecting the design action data, to computationally model these 
five design behaviors, we adopted five different techniques. We 
use aggregated design action preference to model design action 
preferences, Markov model to model one-step sequential 
behavior, Doc2Vec to model contextual behavior, Bi-directional 
LSTM autoencoder to understand long-term sequential behavior, 
and time-gap distribution analysis for understanding reflective 
thinking. To explain the overall process, suppose a designer’s 
sequence of design actions [𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 … … . . 𝑎𝑎𝑁𝑁] which has time 
stamp associated with it [𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 … … . . 𝑡𝑡𝑁𝑁]. 

Before analyzing the aggregated design action preference 
and one-step sequential behavior using the Markov chain, we 
apply an ontological design process model (e.g., the function-
behavior-structure model) action sequences, which consist of 
several design stages to define the design process. By applying 
the design process model, we will obtain a sequence of design 
process stages [𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 … … . . 𝑝𝑝𝑁𝑁]. With this operation, we can 
reduce the dimensionality of the design sequence data. This is 
similar to an embedding (latent space representation), which can 
help interpret designers’ thinking and decision-making 
processes. To elicit designers’ action preferences, we count the 
total number of each design process stage that certain actions fall 
into and plot the resulting distribution for every designer. All 
designers’ action preference vectors are then concatenated to 
form an aggregated matrix representing design action 
preferences. To understand designers’ one-step sequential 
behavior, we apply the first-order Markov chain to the design 
process stages. For every designers’ sequence, we compute the 
transition probability matrix for every designers’ action sequence 
based on the Markov chain model. This transition probability 
matrix can be vectorized, which quantifies the features of the 
one-step sequential behavior. Having N design process stages of 
a design process model, for a particular designer, we get 𝑁𝑁 × 1 
vector from action preference and 𝑁𝑁 × 𝑁𝑁 transition probability 
from Markov chain model. The transition probability can be 
converted into 𝑁𝑁2  × 1 vector. For 𝑛𝑛 designers, respective 𝑁𝑁 ×
𝑛𝑛 and 𝑁𝑁2  × 𝑛𝑛 matrix can be formed. These two matrices 
represent the aggregated action behaviors and one-step 
sequential behavior, respectively.  

To understand designers’ contextual behavior and long-term 
sequential behavior, we apply the Doc2Vec [35] and bi-
directional LSTM auto-encoder [36], respectively, on the design 
action sequence. In Doc2Vec and bi-directional LSTM 
architecture, both attempt to predict an element from the input 
sequence. Doc2Vec or paragraph vectors support this prediction 
process by training paragraph vectors as auxiliary information. 
We will get an embedding matrix from each of these methods. 
As the embedding matrix is already a representation of the 

 
FIGURE 2: THE RESEARCH APPROACH FOR STUDYING DESIGN THINKING BASED ON FIVE DESIGN BEHAVIORS 
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relationship among design actions, the data transformation fro 
design action to design process stage using an ontological design 
process model is not needed in these two methods. It is mention-
worthy that the size of the embedding matrix is user-defined. For 
example, with the embedding size of 𝑀𝑀, and for 𝑛𝑛 designers’ 
sequence, we get 𝑀𝑀 × 𝑛𝑛 dimensional matrix from each of the 
methods. 

 To understand the designers’ reflective thinking, we utilize 
the time-gap distribution analysis. Particularly, we consider the 
time gap corresponding to each of the design actions performed 
by a designer. For example, for the sequence, the time gaps 
are [0, {𝑡𝑡2 − 𝑡𝑡1}, {𝑡𝑡3 − 𝑡𝑡2} … … . . {𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1}]. The distribution 
of this time gap essentially carries the reflective behavior. From 
each of the designers’ time gap distribution, we obtain several 
features, such as the distribution name and distribution 
parameters. For a particular designer, we use these features to 
create a vector, 𝑃𝑃 = [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐷𝐷1,𝐷𝐷2,𝐷𝐷3], where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
indicates the distribution name (a categorical variable) and 
𝐷𝐷1,𝐷𝐷2,𝐷𝐷3 are the distribution parameters. It is noted that the 
parameter number can be varied based on the type of the 
distribution. Assuming there are 𝐿𝐿 parameters, for 𝑛𝑛 designers, 
we obtain an 𝐿𝐿 × 𝑛𝑛 matrix. This matrix will be the feature 
representation of designers’ reflective design behaviors.  

Based on these five models, we can obtain a behavioral 
matrix (i.e., the design embeddings) from each of these five 
corresponding design behavior. Then, we implement a clustering 
method, i.e., X-mean cluster [37], on each behavioral matrix to 
identify the designers who have similar design behavioral 
patterns. Figure 2 depicts a schematic diagram of the research 
approaches. 

3.3 Doc2Vec 
Doc2Vec or paragraph vector uses a neural network 

approach to create a fixed-length vector representation of 
variable length sequences such as sentences, paragraphs, or 
designers’ action sequences. Doc2Vec is based on Word2Vec, 
where it attempts to predict an element in a sequence from its 
surrounding element [35]. Doc2Vec or paragraph vectors support 
this prediction process by training paragraph vectors as auxiliary 
information.  Given a sequence 𝑤𝑤1 ,𝑤𝑤2,𝑤𝑤3, … . ,𝑤𝑤𝑇𝑇, to predict the 
context element 𝑤𝑤𝑡𝑡 , the objective of the Word2vec is to 
maximize the log probability.  

1
𝑇𝑇
∑ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−𝑘𝑘, … … ,𝑤𝑤𝑡𝑡+𝑘𝑘𝑇𝑇−𝑘𝑘
𝑡𝑡=𝑘𝑘 ) (1) 

The prediction task is typically done by a neural network 
architecture where the prediction is made through a multiclass 
classifier such as softmax [38]. This process can be expressed as 
follows: 

𝑝𝑝(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−𝑘𝑘, … … ,𝑤𝑤𝑡𝑡+𝑘𝑘) =  𝑒𝑒
𝑦𝑦𝑤𝑤𝑡𝑡

∑ 𝑒𝑒𝑦𝑦𝑖𝑖𝑡𝑡
                                    (2)                                                                

𝑦𝑦 = 𝑏𝑏 + 𝑼𝑼𝑼𝑼(𝑤𝑤𝑡𝑡−𝑘𝑘 , … … ,𝑤𝑤𝑡𝑡+𝑘𝑘;𝑾𝑾)                                (3)                                                                
, where equation 2 represents the softmax function. Each of 𝑦𝑦𝑖𝑖is 
the log probability for each output element 𝑖𝑖. 𝑼𝑼, 𝑏𝑏 are the 
parameter of neural networks. 𝒉𝒉 is constructed by a 
concatenation of vectors extracted from W.  

In Doc2Vec or paragraph vector framework, every sequence 
is associated with a unique vector, which is represented by a 
matrix D (for all sequences, it creates a matrix). Every element 
of the sequence is also mapped to a unique vector which is 
represented as W in Figure 3. The matrix D and W are 
concatenated and used in Equation (1) in place of 𝒉𝒉.  

3.4 Bi-directional LSTM auto-encoder 
The aim of using an auto-encoder (AE) is to learn a 

compressed, distributed representation of a data set. It is a neural 
network model that captures the most salient features of the input 
data [39]. The basic AE consists of only one hidden layer, and 
the target value is set equal to the input value. The training of the 
AE is done in two phases: encoding and decoding. In the 
encoding phase, input data are mapped into the hidden layer, and 
in the decoding process, the input data are reconstructed from the 
hidden layer representation. Given an input dataset 𝑋𝑋 =
 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … … , 𝑥𝑥𝑛𝑛, the two phases can be expressed as follows: 
 
𝒉𝒉(𝒙𝒙) = 𝑓𝑓(𝑾𝑾𝟏𝟏𝑥𝑥 + 𝑏𝑏1)                                                       (4) 
𝑥𝑥� = 𝑔𝑔(𝑾𝑾𝟐𝟐𝒉𝒉(𝒙𝒙) +  𝑏𝑏2)                                                       (5) 
 
, where, 𝒉𝒉(𝒙𝒙) represents the hidden representations of the input 
vector 𝑥𝑥, and 𝑥𝑥� is the decoder vector of the output layer. 𝑓𝑓 is the 
encoding function, while 𝑔𝑔 is the decoding function. 𝑾𝑾𝟏𝟏 and 𝑾𝑾𝟐𝟐 
are the weight matrix of the encoder and decoder, respectively. 

 
FIGURE 3: Doc2Vec   

 
FIGURE 4 a): BI-DIRECTIONAL LSTM   b) BASIC 

AUTO-ENCODER   



 6 © 2021 by ASME 

𝑏𝑏1 and 𝑏𝑏2are the bias vector in each phase, respectively. A 
schematic diagram of the auto-encoder is shown in figure 4 (b).  
LSTM is an upgraded variation of the recurrent neural network 
(RNN ) [40], which is basically a recursive neural network used 
for sequential data. LSTM uses a gating mechanism that solves 
several flaws of the RNN (i.e., vanishing gradient problem, long-
term dependency, etc.). A detail of the LSTM network is 
described in our previous work [11]. In this study, we leverage 
bidirectional LSTM in the auto-encoder architecture. Compared 
to the basic LSTM model, bidirectional LSTM consists of two 
groups of hidden layers. One layer for input sequence in the 
forward direction and the other layer for input sequence in the 
backward direction. These two hidden layers do not interact with 
each other, and their output is concatenated to the final output 
layer. The mathematical equations for the bidirectional LSTM 
are the same as basic LSTM, except there are two hidden states 
at 𝑡𝑡𝑡𝑡ℎ time steps: 𝒉𝒉��⃗  (forward process) and 𝒉⃖𝒉�� (backward process). 
These two hidden states are concatenated for the final output 
 
𝑯𝑯 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐( 𝒉𝒉��⃗ , 𝒉⃖𝒉��)                                                                 (6) 

 
In the AE architecture, bi-directional LSTM is replaced with 

the feed-forward neural network. A schematic diagram of the bi-
directional LSTM autoencoder is shown in figure 5.  
 
4. CLUSTERING DESIGN BEHAVIORS IN SOLAR 

ENERGY SYSTEM DESIGN - A CASE STUDY  
In this section, we first provide an introduction to the design 

challenge and the data collection method. 

4.1 Design procedure 
The study was implemented in a suburban high school in the 

North-eastern US. The participants are 113 students from seven 
9th-grade classes on the course of the science of energy. These 
students barely had design experience before the project. During 
the six-day project, students worked with an open-source CAD 
tool named Energy3D [41] individually and sought help from 
teachers when needed. Specifically, the project started with a day 
of Energy3D tutorial and followed by three days of conceptual 
learning, in which students interacted with simulations to 
understand five solar concepts (e.g., the Sun’s path over a year) 
and how these concepts affect solar-energy acceptance. Then 

students worked to solve an authentic design challenge for two 
days to apply knowledge to practice and develop design skills.  

4.2 Design problem 
The five solar concepts are the Sun’s path, the projection 

effect, the effect of the air mass, the effect of weather, and solar 
radiation pathways. These concepts are tightly related to the 
design challenge and were selected by domain experts in the 
research team. Individual simulations and exercises were 
provided to students to learn each concept. The design task was 
customized to the students with their school as the context. The 
challenge was named Solarize your school and set as asking for 
bids to power their school with green energy. Mainly, a 3D model 
of their school was provided. Students could install solar panels 
on the school building roof to generate no less than 400,000 kWh 
of electricity per year while the payback period was less than ten 
years. We provide three different solar panel models from which 
designers can choose any one of them for the design (see figure 
6). This design challenge required students to balance several 
factors such as panel costs, solar panel orientation, tile angle, and 
avoiding shadows while aiming for the goal. 

4.3 Data collection and data processing 
Energy3D collects the continuous flow of design logs which 

includes design actions, time steps, design parameters, and 
simulation results. Although initially, we collect 113 designers’ 

 
FIGURE 6: AN EXAMPLE OF THE SOLARIZE YOUR 

SCHOOL DESIGN 

 
FIGURE 5: BI-DIRECTIONAL LSTM AUTO-ENCODER 
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data, after analyzing their design, we realize that several students 
did not follow the design requirements (i.e., choose a different 
one other than the provided solar panels). For a fair comparison, 
we only consider the designs that follow the design constraints, 
and in this way, we identified 39 valid designs. An example of a 
line of design action log is shown below:  

In this study, we only collect actions that are related to 
design, such as adding a component or modifying a component, 
etc. However, we ignore the camera-related action such as 
“zoom in,” “zoom out,” and “camera” because it does not affect 
the design directly. After removing the irrelevant design actions, 
there are 60 unique design actions. Then for action behavior and 
one-step sequential behavior, we develop a coding scheme based 
on the FBS model to transcribe the design actions data into 
design process stages. The coding scheme shown in table 1 is 
used to categorize each design actions into one of the seven 
design process stages, including Formulation (F), Analysis (A), 
Synthesis (S), Evaluation (E), Reformulation 1(R1), 
Reformulation 2 (R2) and Reformulation 3 (R3). The detail of 
the transformation process is described in our prior work [42].  

5. RESULT AND DISCUSSION 

5.1 Result  
In this section, we present the result obtained from different 

design behaviors, particularly action behavior, one-step 
sequential behavior, contextual behavior, long-term sequential 
behavior, and reflective thinking. The behaviors are represented 
as embedding and clustered using the X-mean clustering method. 
To compare the performance of designers of each of the clusters, 
we developed a metric using the design performance data. The 
metric is as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝑃𝑃𝑅𝑅 × 𝐵𝐵 × 𝐸𝐸0
𝑃𝑃𝑜𝑜 × 𝐶𝐶 × 𝐸𝐸𝑅𝑅

 

Here, 
𝑃𝑃𝑅𝑅 = required payback period 

𝐵𝐵 = budget 
𝐸𝐸0 = Obtained energy output 
𝑃𝑃0 = Obtained payback period 
𝐶𝐶 = Cost 
𝐸𝐸𝑅𝑅 = required energy output  

Action behavior is obtained from the aggregation of design 
process stages preference. We apply the FBS design process 
model to convert the design actions to the design process stages. 
Applying the FBS design process model, we get seven design 
process stages. For each of the designers, we get a 7 × 1 vector, 
and for 39 designers, we get a 7 × 39 action behavior matrix. By 
applying X-mean clustering on the action behavior matrix, three 
clusters are found. Cluster 3 includes ten designers who achieve 
the highest mean performance of 1.325 with a standard deviation 
of 0.40, while cluster 1 achieves the lowest performance with 
1.2077 (standard deviation 0.408). Cluster 2 contains 13 
designers with a mean performance of 1.25 (standard deviation 
0.64). Analysis of variance (ANOVA) indicates the difference in 
the cluster's design performance is not significant (p-value is 
0.708).  

We quantify the one-step sequential behavior using the first-
order Markov chain model. Particularly, the transition 

{"Timestamp": "2019-10-22 08:34:26", "Project": "Stoughton 
High School", "File": "stoughton-high-school-ma.ng3", 
"Change Tilt Angle for All Racks": {"New Value": -1.0}} 

TABLE 1: CODING SCHEME BASED ON FBS DESIGN 
PROCESS 

Design process-stages Design action 
Formulation Add any component 

Analysis Analysis of annual net 
energy 

Synthesis Edit any component 
Evaluation Cost analysis 

Reformulation 1 Remove structure 

Reformulation 2 Remove solar device 

Reformulation 3 Remove other components 
 

TABLE 2: CLUSTER OF ONE-STEP SEQUENTIAL 
BEHAVIOR  

Cluster 1 Cluster 2 

0 P1L10 P1L12 

1 P1L14 P1L13 

2 P1L17 P1L20 

3 P1L18 P1L3 

4 P2L10 P1L5 

5 P2L12 P2L11 

6 P2L13 P2L2 

7 P2L14 P4L1 

8 P2L16 P4L10 

9 P2L17 P4L25 

10 P2L7 P4L28 

11 P3L3 P4L32 

12 P4L11 P4L5 

13 P4L26 P6L12 

14 P4L27 P6L17 

15 P4L9 P6L18 

16 P6L1 P6L3 

17 P6L14 
 

18 P6L15 
 

19 P6L19 
 

20 P6L4 
 

21 P6L6 
 

Mean of design 
performance 

1.255333 1.247206 

STD of design 
performance 

0.277998 0.647655 
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probability matrix obtained from the first-order Markov model 
is characterized as the one-step sequential behavior. Like the 
previous method, before applying the Markov model, we apply 
the FBS design process model to transform the design action into 
the design process stage. We obtain a 7×7 transition probability 
matrix for seven design process stages and then flatten the matrix 
to obtain a 49 × 1 vector. After obtaining 39 designers’ 
transition probability matrix, they are converted to a 39 × 49 
matrix that captures the one-step design behavior, from which X-
means clustering is applied. By clustering one-step sequential 
behavior, we identify two clusters. In this method, the 
performance obtained from the clusters is similar. Cluster 1 
contains 22 designers with a mean performance of 1.253 
(standard deviation 0.27), while cluster 2 achieves a 1.247 mean 
performance score with a standard deviation of 1.325. However, 
the t-test indicates that there are no significant differences among 
the performance of the cluster groups (p-value 0.27). Table 2 
shows the result of clustering one-step sequential behavior.  

 Using Doc2Vec, we obtain design embedding that 
represents the designers’ contextual behavior or short-term 
behavior. In this method, we directly use the design actions since 
Doc2Vec provides an embedding matrix of a particular size 
representing the relationship among design actions. There are 
several hyperparameters that need to be tuned and selected for 
the Doc2Vec model. For example, in this study, we choose the 
embedding size for Doc2Vec as 100. Additionally, we choose 
the context window size as 5.  It is mention-worthy that the 
settings of the hyperparameter are user-defined. With these 
settings, for 39 designers, we obtain a 39 × 100 embedding 
matrix. We apply the X-means cluster on the obtained 
embedding matrix and get two clusters. The first cluster contains 
30 designers with a mean performance of 1.22 and a standard 
deviation of 0.48. The second cluster contains nine designers 
with a mean performance of 1.337 and a standard deviation of 
0.43. However, the t-test between the clusters indicates that their 
difference is not significantly higher than the others (p-value 
0.27).  

We obtain design embedding for the long-term sequential by 
utilizing the Bi-directional LSTM autoencoder. In this 
architecture, in both the encoder and decoder part, we use a bi-
directional LSTM layer with a size of 128. Therefore, the 
embedding size from the LSTM autoencoder is 256, and with all 
the designers, we obtain a 39 × 256 matrix. By clustering the 
embedding matrix, we get three clusters. Table 3 shows the 
clustering result of the LSTM autoencoder. Cluster 1 contains 24 
designers with a mean performance of 1.14 (standard deviation 
.37), while cluster 3 has only three designers with a mean 
performance of 1.35 (standard deviation 0.58). Cluster 2 contains 
12 designers with a mean performance of 1.44 (standard 
deviation 0.55).  According to the ANOVA test, the difference 
among the clusters is not significant (p-value 0.7). 
         Finally, to obtain the embedding from reflective thinking, 
we get the designers’ time gap distribution parameters. In this 
study, we consider the time gap as the time before taking a design 
action. Also, it is mention-worthy that we consider the time gap 
between 0s to 300s. During design, some designers may wander 

or waste time which takes more than 300s. For this reason, we 
omit the time gaps, which are more than 300s.  
Additionally, we observe that most of the designers use the time 
gaps between this range. In order to identify the appropriate 
distribution that fit these time gaps, we use Kolmogorov–
Smirnov test [43] where we check different distribution 
including Normal, Exponential, Gamma, Pareto, Generalized 
extreme value (GEV) distribution, Weibull distribution. The test 
indicates that all of the designers’ time gaps follow GEV 
distribution. Figure 7 shows designer P3L3’s empirical time gaps 
and the corresponding fitted distribution. From the distribution, 
we identify three pa  rameters which include shape, location, and 
scale. With these three parameters from 39 designers, we obtain 
a 3 × 39  embedding matrix. This matrix represents the 
designers’ reflective thinking. After applying the X-mean 
cluster, we obtain four clusters. Figure 8 shows the four clusters. 
The result of the clustering is shown in table 5. The result shows 
that cluster 1 contains nine designers with a mean design 
performance of 1.1986 and a standard deviation of 0.32. Cluster 
2 contains 22 designers with means of 1.31 and a standard 
deviation of .55, while cluster 3 contains seven designers with a 
mean design performance of 1.14 and a standard deviation of 
0.39. Cluster 4 has only one designer with a performance of 1.10.  

TABLE 3: CLUSTER OF LONG-TERM SEQUENTIAL 
BEHAVIOR  

Cluster 1 Cluster 2 Cluster 3 
0 P1L10 P1L12 P1L3 
1 P1L13 P2L14 P6L1 
2 P1L14 P2L16 P6L18 
3 P1L17 P2L2 

 

4 P1L18 P2L7 
 

5 P1L20 P3L3 
 

6 P1L5 P4L28 
 

7 P2L10 P4L32 
 

8 P2L11 P4L9 
 

9 P2L12 P6L12 
 

10 P2L13 P6L6 
 

11 P2L17 
  

12 P4L1 
  

13 P4L10 
  

14 P4L11 
  

15 P4L25 
  

16 P4L26 
  

17 P4L27 
  

18 P4L5 
  

19 P6L14 
  

20 P6L15 
  

21 P6L17 
  

22 P6L19 
  

23 P6L3 
  

24 P6L4 
  

Mean of 
design 

performance 

1.202853 1.336327 1.349628 

STD of design 
performance 

0.356015 0.636751 0.587594 
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However, the Anova test indicates that the difference in design 
performance among the clusters is not significant (p-value is 
0.83).  

5.2 Discussion 
This study aims to understand design thinking from different 

behavioral perspectives by characterizing them through design 
embedding. After obtaining the embedding, we apply X-mean 
cluster on each of the embedding matrices to group the designers. 
The clustering result indicates that the designers are clustered not 
according to their design performance, instead of their 
behavioral patterns. For example, in the aggregated action 
behavior embedding clustering, the average number of used 
design process stages are different in each of the clusters. 
Designers of cluster 3 use a high number of Synthesis on average 
compared to the other clusters’ designers. Cluster 3 uses on 
average 500 Synthesis, while cluster 1 and cluster 2 use on 
average 150 and 233 Synthesis, respectively in their design task. 

This indicates that designers of cluster 3 are involved in editing 
design components more frequently than the other designers 
during the design process. Additionally, we observe a higher 
number of usage of Formulation among the designers of cluster 
3 than the others. The average number of the Formulation used 
by cluster 3 is 62, while cluster 1 and cluster 2 use 35 and 40, 
respectively. Figure 9 shows the design process stage preference 
of cluster 3. 

For reflective thinking behavior embedding clustering, 
designers in each of the clusters also follow specific design 
thinking patterns. For example, the designers of cluster 1 use a 
large number of 1s-3s time gaps compare to the other time gaps. 
This phenomenon indicates that designers of this group tend to 
use design actions without much thinking. This behavior also 
indicates that these designers like to do trial and error more often 
during the design task. In cluster 2 and cluster 3, designers also 
follow the same distribution of time gaps. However, unlike 
cluster 1, designers of the cluster 2 and 3 use relatively low 
number of 1-3s time gaps. Rather in these clusters, 4-10s time 
gaps are relatively higher than the designers of cluster 1, which 
indicates that before using some of the design actions, these 
designers think. There is only one designer in cluster 4, and his 
design thinking different from the other designers.  

Design embedding of one-step sequential behavior 
identified from the first-order Markov chain indicates that 
designers follow several design patterns. By clustering the one-
step sequential design embedding, we identified two clusters. In 
both of the clusters, designers use Synthesis→ Synthesis and 
Formulation→Synthesis very frequently. Synthesis→Synthesis 
indicates that designers sequentially change the parameters of 
the design components to achieve the final objective of the 
design task. For example, after changing the solar panel's tilt 
angle, designers may change the azimuth of it. 
Formulation→Synthesis indicates that after adding a component, 
the designer tends to change the component's parameter. For 
example, after adding solar panels, the designer may change its 
parameter, such as changing the model or changing the solar 
panels' base height. There are some design patterns that are 

 
FIGURE 8: CLUSTER OBTAINED FROM 

REFLECTIVE THINKING BEHAVIOR 

 
FIGURE 7: TIME GAP DISTRIBUTION OF DESIGNER 

P3L3 

 
FIGURE 9: PREFERENCE OF DESIGN PROCESS 
STAGES OF CLUSTER 3 
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distinct from each of the clusters. For example, designers of 
cluster 2 use Evaluation→ Analysis design patterns during their 
design task, while this pattern is used very rarely among the 
designers in cluster 1. This pattern indicates that after doing cost 
evaluation (compare the current cost with the given budget) of 
the solar panel designer analysis, the solar panels' electricity. 
Figure 10 shows a heat map of the transition probability of the 
design patterns found by the designers of cluster 2. The bright 
square indicates a high transition probability of the 
corresponding design patterns, where the dark square indicates 
no or very low transition probability.  
 
6. CONCLUSION 

In this study, we develop a method to represent design 
thinking by characterizing behavior from multiple dimensions. 
We identified five different design behaviors, including design 
action preference, one-step sequential behavior, contextual 
behavior, long-term sequential behavior, and reflective design 
behavior. The design behaviors are characterized by different 
machine learning and statistical methods, and the design thinking 
is represented through a latent representation referred to as 
design embedding. We use the distribution of action preference 
to characterize action behavior. The First-order Markov model is 
utilized for one-step sequential behavior. To identify contextual 
behavior, we use Doc2Vec. A bi-directional LSTM autoencoder 
characterizes long-term sequential behavior. Finally, we use time 
gap distribution for reflective design behavior. After identifying 
the design embedding from each design behavior, we use the X-
mean cluster on each embedding to identify similar behaviors. 
The result indicates that for different embedding, designers are 
grouped in different clusters. Also, we find that the designers are 
grouped not actually based on their design performance, rather 
based on their design behavioral patterns. For example, some 
designers use a trial and error strategy without much thinking, 
while others think a bit amount of time before executing design 
actions. Additionally, we identify several design patterns (i.e., 
Synthesis→Synthesis and Formulation→Synthesis). 

The major contribution of this paper is the identification of 
latent representation (i.e., design embedding) of design thinking 
through design behaviors from multiple dimensions. The correct 
implementation of design embedding can be useful in design 
research in different ways. For example, design embedding can 
be used to identify designers of similar behavior and identify 
their design strategies and patterns which can be used to form an 
efficient design team. Also, in predicting future design decisions, 
the design embedding can be used in the first place because of 
its low dimensional space. Furthermore, as the design process is 
a combination of different design behaviors, all of these design 
embeddings can be used to develop a predictive model for design 
performance. In the future study, we will focus on developing a 
computational model from these embedding which can predict 
design performance based on their design actions. Particularly, 
we will develop a regression model from the identified design 
embedding and correlate with the design performance. 
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